Multi-wavelength Properties of SN la Host Galaxies

Ravi Gupta with Masao Sako (*UPenn*) and Charlie Conroy (*CfA*)

SDSS-II Supernova Collaboration Meeting Argonne National Labs 25 October 2010

Data Sample

- 459 SDSS galaxies identified as hosts for the spectroscopically confirmed SNe Ia found in SDSS-II Supernova Survey [0.01 < z < 0.48]
- 272 of these 459 (59%) have UKIDSS matches within a 5" radius
- 192 (42%) GALEX matches within a 5" radius

GALEX [UV] + SDSS [optical] + UKIDSS [near-IR] photometry

The Effect of Dust & Metallicity

UV data helps constrain metallicity & recent SFR while near-IR data probes dust & the older stellar populations that compose a large portion of the mass

3/13

Method

 Generate grid of models parameterized by metallicity, dust, and star-formation history using Flexible Stellar Population Synthesis code of Conroy, Gunn, & White 2009

Minimum χ^2 grid search:

- For each galaxy, convert observed magnitudes to AB system, correct for MW extinction, then convert magnitudes & corresponding errors to flux
- Perform χ^2 analysis, comparing data fluxes with each of the model fluxes
- Take the minimum- χ^2 model to be the best-fit model

Model Fit Parameters

- Metallicity, Z (assumed constant for each model)
- Attenuation of old stellar light, dust2

Attenuation described by $\exp(-\tau_{\lambda}(t))$, where $\tau_{\lambda}(t)$ is the optical depth given by the 2-component dust model of Charlot & Fall (2000):

$$\tau_{\lambda}(t) \equiv \begin{cases} \tau_{1}(\lambda/5500 \text{ Å})^{-0.7} & t \leq 10^{7} \text{ yr} \\ \tau_{2}(\lambda/5500 \text{ Å})^{-0.7} & t > 10^{7} \text{ yr} \end{cases}$$

$$t \leq 10^{7} \text{ yr}$$

$$t > 10^{7} \text{ yr}$$

$$t > 10^{7} \text{ yr}$$

$$t > 10^{7} \text{ yr}$$

- Exponential decline rate of SFR, au
- Time of initial star formation, t_{start}

Parameter Grid

log(Z/Z _⊙)	-0.88, -0.59, -0.39, -0.20, 0, 0.20
dust2	0, 0.1, 0.3, 0.5, 1.0, 1.5
τ (Gyr)	0.1, 0.5, 1, 2, 3, 4, 6, 8, 10
t _{start} (Gyr)	0, 1, 2, 3, 4, 5, 6, 7

2592 MODELS

Derived Galaxy Properties

For each galaxy we derive 3 properties:

- stellar mass multiply the observed luminosity in the r band by the model M/L in the same band
- current average specific star formation rate (sSFR) average SFR(t) over the past 0.1 Gyr
- average age of stellar population $\frac{\int t \times SFR(t)dt}{\int SFR(t)dt}$

For each galaxy, we calculate the median mass, sSFR, age and the corresponding uncertainties from the probability distribution obtained from likelihoods

Galaxy Properties: Results

Effect of New Star Formation Rate

"Delay Time Distribution"

SN la Properties

- Used MLCS2k2 [Jha et al. 2007] to obtain SN Ia properties (Δ , μ , $A_{\rm V}$)
- Look for correlations between host galaxy properties and SNe Ia properties
- If observed variations in SNe la are due to environmental factors or systematics, it would have important implications for cosmology and the use of SNe la as "standard candles"

SN Properties vs. Galaxy Properties

We also find evidence that more massive galaxies seem to host brighter SNe after light-curve correction [Kelly et al. 2010; Sullivan et al. 2010; Lampeitl et al. 2010]

HR > 0 indicates SN is fainter after light-curve correction

Summary & Future Work

- Stellar masses, sSFRs, and ages for 459 SN Ia host galaxies estimated from multi-wavelength photometry
- Confirmed trend of mass with Hubble residual;
 continuing to look for SN-galaxy correlations
- Further investigate delay time
- Use available spectra to better constrain metallicity and SFR (Chris D'Andrea)